

Service Bulletin

Machinery Affected:	Cyber A/ $T^{\mathbb{R}}$, Cyber, and SmartSet Pro ^{\mathbb{R}} Saws
Document:	SB193
Title:	Installing a Relay to Automatically Operate Waste Conveyor
Applies To:	All Saws Currently Without This Feature
Distribution:	Customers, Upon Order

MiTek	
-------	--

Machinery Division 301 Fountain Lakes Industrial Drive St. Charles, MO 63301 Phone: 800-523-3380 www.mii.com Copyright © 2011 *MiTek*[®]. All rights reserved.

Item # and rev.	SB 193 Rev. A	
Revision date	18 April 2011	
Revised by	R. Tucker	
	•	
Date created	1 March 2011	
Created by	R. Tucker	
Reviewed by	V. Carroll	
Approved by	G. Pritchett	
	•	
Applicability	All saws listed	
Effectivity	1 March 2011	
-		

Purpose

For purposes of this document, the programmable relay being discussed will be called the ZEN relay. An optional feature is now available for MiTek automated saws that allows a programmable relay (ZEN relay) to automatically turn the waste conveyor on and off, in relation to the saw blade status. When the saw blade brakes release (saw blades begin spinning), the waste conveyor automatically turns on. A few seconds after the saw blade brakes engage, the waste conveyor turns off.

The waste conveyor can still be turned on and off manually, using the touch screen. If the waste conveyor is turned on manually prior to starting the saw blades, this new feature will do nothing. If the operator fails to turn the waste conveyor on before starting the saw blades, the programmable relay will automatically complete that step.

Overview

The parts included in this kit are shown in Table 1. Please ensure all parts are present before starting this procedure.

Qty.	Part Description Part		
1	Programmable relay, 6i/4o, Zen	92198-501	
1	Fuse, 2.5 amp	516540	
1	Terminal, fuse holder	518207	
1	Schematic, saw waste conveyor	90620	
1	Service Bulletin 193 document	SB193	

Table 1: Parts in SB193 Kit

Before beginning the procedure, gather the supplies listed in Table 2.

Table 2: Customer-Supplied Items

Qty.	Part Description
Depends placement of relay	Wire, 16 gauge, appropriate colors
1	Alerting device, see page 6
1 ea.	Basic electrician's tools

If you have any questions, call MiTek Machinery Division Customer Service at 800-523-3380.

Procedure

Electrical Lockout/Tagout Procedures

	ELECTROCUTION HAZARD!	
^	Verify that all power to the machine has been turned off and follow approved lockout/tagout safety procedures before performing any maintenance.	
14	All electrical work must performed by a qualified electrician.	
	If it is absolutely necessary to troubleshoot an energized machine, follow NFPA 70E for proper procedures and personal protective equipment.	

When Working on a Machine Inside the Machine's Main Electrical Enclosure or in the Electrical Transmission Line to the Machine

Before opening the main electrical enclosure, or attempting to repair or replace an electrical transmission line to the machine, lockout/tagout the machine properly. Follow your company's approved lockout/tagout procedures which should include, but are not limited to the steps here.

- 1. Engage an E-stop on the machine.I
- 2. Turn the machine's disconnect switch to the "off" position. This is usually required to open the main electrical enclosure's door.
- 3. Shut the power to the machine off at the machine's power source which is usually an electrical service entry panel on the facility wall. One example of a locked-out power source panel is shown in Figure 1.
- 4. Attach a lock and tag that meets OSHA requirements for lockout/tagout to the electrical service entry panel.
- 5. Open the door to the enclosure in which you need access, and using a multimeter, verify that the power is off.

Figure 1: Lockout/ Tagout on the Power Source Panel

Pneumatic System Lockout/Tagout Procedure

	MOVING PARTS CAN CRUSH AND CUT.	
	Always verify that power to the machine has been turned off and follow approved lockout/tagout procedures.	
	Turn off the air switch or shutoff valve before performing any maintenance on the equipment.	

HIGH PRESSURE HAZARD. Bleed pneumatic lines before performing any maintenance.

Connecting the Wires

- 1. Gather the items listed in Table 2.
- 2. Mount the ZEN relay on an existing DIN rail.

The ideal location is on the stationary end of the saw on shelf 5, as shown in Figure 2.

Figure 2: Location of ZEN Relay, Stationary End, Shelf 5

- 3. Remove the original PLC outputs (Waste Conveyor and Incline Conveyor) from the motor starter and redirect them to the ZEN relay. Connect the ZEN outputs Q1 and Q2 to the A1 control of the motor starter contactor.
- 4. Referring to the schematic, make the wire connections as shown in Table 3.

ZEN V2	Cyber A/T	Cyber	SS Pro	Function
	90507	92034	90129	Electrical schematic part number
10	Q28	Q28	Q21	Original MS Incline conveyor signal ON
11	Q2	Q2	Q25	Original Brake Release signal ON
12	I 45/I 48	I 45/I 48	l 14/l 15	MS Overload signal
13	Q27	Q27	Q20	Original MS Waste Conveyor signal ON
14	9S	9S	10	Stationary Power enabled
15	9T	9T	10	Carriage Power enabled
Q 0				Alert Signal-conveyor is about to move
Q 1	MS_5B	MS_5B	MS_W1	New MS Waste Conveyor ON
Q 2	MS_5C	MS_5C	MS_W2	New MS Incline Conveyor ON

Table 3: Terminal Numbers for Wire Connections

5. The remaining inputs (I1, I2, I4, & I5) on the ZEN relay are just monitoring existing points in the saw system. Connect a wired signal to these inputs without disconnecting them from their original points.

The overload detection must monitor at least one of the original connections. These can not be disconnected from the saw and placed in series. They must maintain their inputs to the current PLC input. However, one or both points can be monitored. If both are monitored: only one overload will need to be tripped. This will signal both inputs simultaneously to the PLC. The ZEN will stop both conveyors if used.

6. Connect a customer-supplied alerting device to the relay output. Bring power to one terminal, and the other terminal is the signal to the device.

Alerting Device Requirements

The alerting device can be an AC or DC device. It may be a beacon light, a horn, or any alert that you determine is adequate warning to remove risk of getting hurt when the conveyor begins automatic movement.

Testing for Safe Operation

Perform this test after the installation of the ZEN programmable relay. This test applies to *Cyber A/T, Cyber*, and *SmartSet Pro* saws.

	\Lambda WARNING
CRUSH OR CUT HAZARD!	
	Each step must be satisfied and the part working correctly before moving to the next step.

- 1. Remove the lockout/tagout devices in a safe manner.
- 2. Verify all inputs are working correctly to the programmable relay:
 - a) Test Input (i1) Brakes Released (Start a blade long enough to verify the input less than 5 sec).
 - b) Test Input (i2) simulate an Overload condition (trip the overload device).
 - c) Test Input (i4 & i5) Control Power loss (Engage E-stop Circuit).
 - d) Do not proceed until inputs are working correctly.
- 3. If the inputs above are working correctly:
 - a) Test Input (i0) Start & stop incline conveyor using operator screen.
 - b) Test Input (i3) Start & stop waste conveyor using operator screen.
 - c) Do not proceed until inputs are working correctly.
- 4. Verify manual start of conveyors by turning the conveyor ON at the touch screen.
- 5. Engage an E-stop while running and verify conveyors are OFF.
- 6. Manually engage an E-stop for each conveyor to trip the overload associated with the conveyor
- 7. Verify overloads are still monitored by operator interface.
- 8. Verify that the overload condition stops conveyor outputs on programmable relay (Refer to electrical schematics to correct.)
- 9. Verify that conveyors automatically start when blades are started (after 5 second delay).
- 10. Verify that the conveyors automatically stop when blades are shut off (after 5 second delay).

